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Abstract. A coupled-channel model is used to study the nature of the scalar mesons produced in the
decay φ → γππ. The KK̄ molecular picture of f0(980) is found to be in a good agreement with the
recent experimental data from SND and CMD-2. The structure of the light scalar mesons is elucidated by
investigating the S-matrix poles and the qq̄ spectral density.

PACS. 12.39.-x Phenomenological quark models – 12.39.Pn Potential models – 13.40.Hq Electromagnetic
decays

1 Introduction

The production of scalar mesons in radiative decays is a
valuable source of information on hadron spectroscopy. It
was argued [1,2] that the branching ratio for φ→ γ f0(980)
can be used to make a unique choice among different mod-
els of f0(980): a conventional quark-antiquark state, an
exotic qqq̄q̄ state [3], and a KK̄ molecule [4]. Such a pos-
sibility to resolve the long-debated problem of the f0(980)
structure using a single partial width looks very attractive.
However, it was argued in [5] that the dependence of the
theoretical predictions for the φ→ γ f0(980) decay on the
f0(980) structure is partly due to differences in modeling.
Recent measurements of the radiative decays φ → γπ0π0

by SND [6] and φ → γπ+π−, γπ0π0 by CMD-2 [7,8] in
Novosibirsk have made it possible to confront alternative
models of the light scalar mesons with experimental data.

The goal of this paper is to reanalyze the calculation
of the decay width for φ → γ f0(980) in coupled-channel
models where the f0(980) state arises as a dynamical state
(a KK̄ molecule which may also have a substantial admix-
ture of a quark-antiquark component). Since the φ-meson
is nearly a pure ss̄ state, the decay φ → γππ is an OZI-
rule violating process which is expected to proceed via a
two-step mechanism with intermediate KK̄ states. There-
fore this decay is well suited for probing the KK̄ content
of the scalar mesons. The KK̄ molecular state was orig-
inally proposed in the potential quark model [4,9,10]. A
dynamical state close to KK̄ threshold is also introduced
in the coupled-channel models [11–14] and in the meson
exchange interaction models [15,16]. A state strongly cou-
pled to the ss̄ and KK̄ channels near the KK̄ threshold was
as well found in the unitarized quark model [17,18]. The

a e-mail: valeri.markushin@psi.ch

coupled-channel model derived from the lowest order chi-
ral Lagrangian [19,20] produces a scalar state dominated
by the KK̄ channel. General discussions of the nature of
the f0(980) can be found in [10,13,17,21–23] and refer-
ences therein.

Our approach is based on a coupled-channel model
(CCM) for the ππ and KK̄ systems which is similar to
the one studied in [13]. The calculation of the decay
φ → γ f0(980) for point-like particles is summarized in
sect. 2. The details of the coupled-channel model are given
in sect. 3, and the model parameters are determined from
a fit to the ππ scattering data. The reaction φ → γππ
in a CCM framework is studied in sect. 4. The analytic
structure of the ππ and KK̄ scattering amplitudes is inves-
tigated in sect. 5. The mixing between the two-meson and
qq̄ channels is discussed in sect. 6. In sect. 7 the physical
properties of the scalar mesons in the model proposed are
discussed and compared to other approaches in the liter-
ature. The details of the formalism are collected in the
Appendices.

2 The decay φ → γ f0

For the benefit of the reader, we begin with a brief sum-
mary of the formulas describing radiative transitions be-
tween vector and scalar states. The amplitude of the ra-
diative φ decay into the scalar meson f0 has the following
structure which is imposed by gauge invariance:

M(φ→ γ f0) = ε
µ
φε

ν
γ(pνqµ − gνµ(p · q))

×H(
p2, (p− q)2), (1)

where (εφ, p) and (εγ , q) are the polarizations and four-
momenta of the φ and γ, correspondingly, and H(p2, (p−
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Fig. 1. The minimal gauge-invariant set of diagrams for the
decay M(φ → γ f0) in the case of point-like particles: (a) the
loop radiation; (b) the contact term.

q)2) is the scalar-invariant amplitude which depends on
the invariant masses of the initial and final mesons. The
polarization vectors satisfy the constraints εφ · p = 0 and
εγ · q = 0. Using the three-dimensional gauge εγ = (0, εγ)
in the center-of-mass system (CMS) one gets the ampli-
tude

M(φ→ γ f0) = (εφεγ)mφωH
(
p2, (p− q)2), (2)

where mφ is the φ mass, ω is the photon energy in the
CMS, and εφ and εγ are the φ and γ three-dimensional
polarization vectors in the CMS, respectively.

For point-like particles, the amplitude M(φ → γ f0)
is given by the diagrams in fig. 1 (see [5] and references
therein). While the diagram fig. 1(a) corresponding to loop
radiation is overall logarithmically divergent, its contribu-
tion to the pνqµ term in eq. (1) is finite. Gauge invariance
enforces the appearance of the seagull diagram fig. 1(b)
which contributes only to the gνµ(p·q) term in eq.(1). Since
the sum of the loop radiation and seagull terms is gauge
invariant, one obtains the total amplitude M(φ→ γS) by
calculating only the pνqµ term of the loop radiation. The
result for the scalar invariant amplitude is [24]

H
(
p2, (p− q)2) =

egφgf0KK

2π2m2
K

I(a, b), (3)

a =
m2

φ

m2
K

, b =
m2

f0

m2
K

, (4)

where gφ and gf0KK are the φK+K− and f0K+K− coupling
constants and the function I(a, b) is defined in appendix A.
The radiative decay width is

Γ (φ→ γ f0) =
ω3

∣∣H(p2, (p− q)2)∣∣
12π

(5)

=
αg2φg

2
f0KK

3(2π)4
ω

m2
φ

|(a− b)I(a, b)|2. (6)

The generalization of eqs. (1), (3), and (6) to the case
φ→ γππ, where the ππ system has total angular momen-
tum J = 0 and isospin I = 0 is straightforward [25]:

M(φ→ γππ) = εµφε
ν
γ(pνqµ − gνµ(p · q))

×Hππ

(
p2, (p− q)2). (7)

Here the scalar-invariant amplitude Hππ(p2, (p − q)2) is
given by (compare with eq. (3))

Hππ

(
p2, (p− q)2) =

egφ
2π2m2

K

I(a, b)tK+K−→ππ (8)

and tK+K−→ππ is the J = 0 part of the T -matrix for the
K+K− → ππ scattering. The ππ invariant mass distribu-
tion has the form

dΓ
dMπ+π−

= 2
dΓ

dMπ0π0

=
αg2φω

18(2π)6m2
φ

|(a− b)I(a, b)|2∣∣t0KK̄→ππ

∣∣2kππ,(9)

where t0
KK̄→ππ

=
√
6 tK+K−→π+π− is the isoscalar KK̄ →

ππ amplitude and kππ is the relative momentum of the
pions in the final state:

kππ =

√
M2

ππ

4−m2
π

, M2
ππ = (p− q)2. (10)

Equation (9) leads to eq. (6) in the Breit-Wigner (BW)
approximation for the K+K− → ππ scattering amplitude

tK+K−→ππ =
gf0KKgf0ππ

M2
ππ − (Mf0 − iΓf0/2)2

(11)

under the assumption that the integral over the ππ mass
spectrum is saturated by the narrow resonance with mass
Mf0 and width Γf0 (see appendix A).

According to eq. (8), the hadronic part of the am-
plitude, which contains the information about the scalar
mesons, is factored out in the form of the T -matrix for
the K+K− → ππ scattering, with both the physical region
(Mππ ≥ 2mK) and the unphysical region (Mππ < 2mK)
being relevant to the φ → γππ decay. It is known from
the studies of scalar mesons, see [13,22,23,26] and refer-
ences therein, that the analytical structure of the scalar-
isoscalar amplitudes near the KK̄ threshold is far from be-
ing a trivial BW resonance. Therefore a coupled-channel
model of the K+K− → ππ scattering is required to de-
scribe the decay φ→ γππ beyond the BW approximation.

3 The ππ-KK̄ coupled-channel model

To describe the interaction in the ππ-KK̄ system with to-
tal angular momentum J = 0++ and isospin IG = 0+, we
exploit a coupled-channel model similar to that of [13].
The two scattering channels, 1 and 2, correspond to the
ππ and KK̄ systems and channel 3 contains a single qq̄
bound state. The T -matrix, as a function of the invariant
mass squared s, is defined by the Lippmann-Schwinger
equation

T (s) = V + V G0(s)T , (12)

where G0(s) is the free Green function.
The interaction potentials are taken in separable form:

V =

(
v11(s)|1〉〈1| v12(s)|1〉〈2| g13|1〉〈qq̄|
v12(s)|2〉〈1| v22(s)|2〉〈2| g23|2〉〈qq̄|
g13|qq̄〉〈1| g23|qq̄〉〈2| 0

)
, (13)
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Table 1. The model parameters obtained from the data fits. The fit 1 is based on using only the ππ scattering data (the phase
δ0
0 and the inelasticity η0

0). The fits 2–4 include in addition the mass distribution dΓ/dMππ in the decay φ → γπ0π0: data from
SND [6] in fit 2, from CMD-2 [8] in fit 3, and the combined data [6,8] in fit 4. The value of λ2 was fixed in all fits.

Fit b g11 g22 g12 λ1 λ2 g13 g23 Mr

(GeV−1) (GeV−3) (GeV−3) (GeV−3) (GeV) (GeV) (GeV1/2) (GeV1/2) (GeV)
1 5.251 3.564 5.326 3.741 0.477 0.7 2.670 0.464 1.136
2 6.075 2.953 3.945 −0.121 0.499 0.7 2.708 0.716 1.094
3 5.188 2.944 3.683 −0.270 0.538 0.7 2.576 0.690 1.111
4 5.299 2.954 3.725 −0.341 0.529 0.7 2.588 0.702 1.105

where the form factors in channel 1 and 2 depend on the
corresponding relative three-momentum k:

〈k|1〉 = ξ1(k) = λ2
1

k2 + λ2
1

, (14)

〈k|2〉 = ξ2(k) = λ2
2

k2 + λ2
2

. (15)

In [13], the potentials vij(s) were assumed to be energy
independent, and the chiral symmetry constraints on the
scattering amplitude were strictly imposed only in the ππ
channel by adjusting the strength of v11 so that the Adler
zero is at the correct position. In the present case, it is
essential to ensure a correct behaviour of the KK̄ → ππ
scattering amplitude not only in the physical scattering
region but also down to the ππ threshold. We found it
easier to impose the chiral symmetry constraints by using
energy dependent potentials1. The energy dependence is
taken in the form

v11(s) = b− g11s, (16)
v12(s) = −g12s, (17)
v22(s) = −g22s. (18)

With our choice of interaction (13)–(18) the analytical
solution for the T -matrix can be easily obtained. Further
details of the model are given in appendix B. As in [13] we
assume that the diagonal interaction in the KK̄ channel
produces a weakly bound state in the absence of coupling
to the other channels, thus simulating a “molecular” origin
of the f0(980) resonance. The state |qq̄〉 in channel 3 has
a bare mass Mr > 2mK.

The model parameters have been determined from the
fit of the ππ scattering phase δ00 and the inelasticity pa-
rameter η0

0 in the mass range Mππ ≤ 1.5GeV, see ta-
ble 1 and figs. 2(a), (b). Since the fit was found to be only
weakly sensitive to the form-factor parameter λ2, its value
was fixed, and only the coupling constants gij , the bare
mass of qq̄, and λ1 were treated as free parameters. The
parameter b in the diagonal ππ potential eq. (16) was used
for fine tuning of the ππ scattering length which was fixed
at a00 = 0.22m−1

π [30]. The best fit of only the ππ scat-
tering data (fit 1) does not lead automatically to a very
good description of the ππ invariant mass distribution in
the decay φ → γππ. However, the φ → γππ improves if

1 The unitarization of the lowest order in chiral perturbation
theory goes along a similar way, see [19] and references therein.
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Fig. 2. The scattering phase δ0
0 and the inelasticity parameter

η0
0 for the S-wave ππ scattering vs. the ππ invariant mass. The
experimental points are from [27–29]. The curves show the fits
in our model: fit 1 (the dashed lines) involves only the ππ
scattering data, fit 4 (the solid lines) includes in addition the
data for φ → γπ0π0 [6,8].

the dΓ/dMππ data are added to the fit as shown in fig. 3
(the details are discussed in sect. 4). As a result, our model
provides a good description of the whole data set.

The energy dependence of the T -matrix element
tK+K→ππ calculated in our coupled-channel model is
shown in fig. 4. In addition to a narrow peak due to the
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Fig. 4. The T -matrix for the KK̄ → ππ scattering (J = I =
0) vs. the invariant mass of the ππ system Mππ. The model
parameters correspond to the fit 4 in table 1.

f0(980) state, this matrix element has a significant contri-
bution from the lower mass region corresponding to the
σ-meson.

4 The decay φ→γππ in the coupled-channel
model

The formulas given in sect. 2 are valid for point-like
particles. When a form factor in the KK̄ → ππ vertex
is included, the φ → γππ amplitude contains an addi-
tional term arising from the minimal substitution kµ →
(kµ − eAµ) in the momentum dependence of the form fac-
tors (see [5] for details). With an appropriate choice of the
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Fig. 5. The minimal set of diagrams giving a gauge-invariant
amplitude M(φ → γππ) in the coupled-channel model: (a) the
loop radiation; (b) the contact (seagull) term, (c) the form
factor term. In the nonrelativistic approximation, the particles
marked with × are on mass shell.

form factors, the sum of three diagrams shown in fig. 5 be-
comes explicitly finite. In order to study the influence of
the form factors on the results for the φ→ γππ we use a
nonrelativistic approximation for the K+ and K−, which is
justified by the fact that the most interesting region corre-
sponding to the f0(980) resonance is very close to the KK̄
threshold. The electric dipole matrix element is factorized
into two parts describing the K+K− loop radiation with
gauge invariant complement and the final state rescatter-
ing K+K− → ππ, correspondingly. The total scalar invari-
ant amplitude has the form

H(λ)
ππ

(
p2, q2

)
=

egφ
2π2m2

K

Jλ(Mππ)tK+K→ππ(Mππ) (19)

which is similar to the relativistic point-like case de-
fined by eq. (8) where the function I(a, b) is replaced by
Jλ(Mππ). For the definition of Jλ(Mππ) and further tech-
nical details we refer to appendix C. The parameter λ
refers to the form-factor dependence on the relative K+K−
momentum in the K+K− → ππ vertex given by eq. (15).
Figure 6 shows the dependence of the electric dipole ma-
trix element on the ππ invariant mass for different values
of the form factor parameter λ in comparison with the
relativistic point-like case.

With our choice of the form factor (15) there is no
substantial suppression of the nonrelativistic result2 in
comparison to the point-like case for the relevant range
of λ = 0.6–0.8GeV (which corresponds to the data fit in
our coupled-channel model). For larger values of λ, the full
relativistic treatment is needed as the real part of the non-
relativistic result becomes sensitive to the short-distance

2 The stronger dependence of the total amplitude on the form
factor found in [5] results from the use of the dipole form factor
which falls off faster than the monopole form factor used in our
case.
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Table 2. The resonance poles of the S-matrix in the complex mass plane M =
√

s (GeV). The definition of the fits is given in
table 1.

Pole Sheet Fit 1 Fit 2 Fit 3 Fit 4
MA II 0.991− i0.24 0.974− i0.020 0.978− i0.015 0.975− i0.017
MB II 0.455− i0.237 0.456− i0.232 0.469− i0.234 0.465− i0.236
MC II 1.214− i0.262 1.401− i0.266 1.424− i0.261 1.417− i0.263
MD III 0.789− i0.487 0.677− i0.234 0.670− i0.266 0.666− i0.227
ME III 1.403− i0.320 1.384− i0.261 1.408− i0.250 1.400− i0.249
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Fig. 6. (a) The function I1 = (a − b)I(a, b), a = m2
φ/m2

K,

b = M2
ππ/m2

K vs. the invariant mass of the ππ system Mππ.
(b) Its nonrelativistic analog Jλ(Mππ) · (m2

φ − M2
ππ)/m2

K for
λ = 0.5GeV (solid lines), λ = 0.6GeV (dashed lines), and
λ = 0.8GeV (dotted lines).

contribution (see the discussion in [5]). The dependence
of the imaginary part of M(φ → γππ) on the form fac-
tor in the mass region close to the KK̄ threshold is rather
weak. As a result, we can neglect the form factor depen-
dence in the loop calculations and just use the relativistic
point-like result given by eq. (8). It is interesting to note
that the imaginary part can be obtained from the diver-
gent triangle diagram fig. 5(a) alone by using the Siegert
theorem which ensures a correct behaviour of the electric
dipole matrix element.

5 The poles of the S -matrix

The poles of the S-matrix in the complex s-plane corre-
sponding to the fits in sect. 3 are shown in table 2 and
fig. 7. There are five poles related to the resonances in our
model. The pole MA located on the sheet II (Im k1 < 0,
Im k2 > 0) is very close to the KK̄ threshold. The pair of
poles,MB on sheet II andMD on the sheet III (Im k1 < 0,
Im k2 < 0), corresponds to a broad structure associated
with the σ-meson. The other pair of poles, MC on sheet
II and ME on sheet III, corresponds to a broad resonance
above the KK̄ threshold, which can be associated with the
f0(1370) state (for a more realistic description of the S-
matrix above 1.3GeV additional poles are needed which
are not included in the present model). The position of
the resonance poles depends on the coupling constants,
and this distinguishes them from the fixed poles originat-
ing from the singularities of the form factors (15). The
latter are located at k1 = ±iλ1 and k2 = ±iλ2, their
distance to the physical region being determined by the
range of the interaction. In our model these fixed poles
approximate the potential singularities which correspond
to the left-hand cut in a more general case.

The origin and the nature of the resonance poles found
in our model can be elucidated by studying how these
poles move in the complex s-plane when the model pa-
rameters are varied between the physical case determined
by the fit and the limit of vanishing couplings in the ππ
channel and between the ππ and the other channels (KK̄
and qq̄):

v11(s) → x · v11(s), 0 ≤ x ≤ 1, (20)
v12(s) → x · v12(s), (21)

g13 → x1/2 · g13, (22)

g23 → x1/2 · g13. (23)

The diagonal interaction in the KK̄ channel with the phys-
ical strength of the coupling g22 produces a bound state
close to the KK̄ threshold with mass mKK̄ = 0.97GeV.

Our coupled-channel model has only one pole MA =
0.975− i0.017GeV near the KK̄ threshold, which is suffi-
cient for a good description of the ππ scattering data. This
pole is directly related to a molecular KK̄ state in the ab-
sence of coupling to the ππ channel. The number of the
S-matrix poles near the KK̄ threshold has been discussed
in the literature (see [13,22,26] and references therein)
for a long time. While the relation of the f0(980) meson
to at least one S-matrix pole close to the KK̄ threshold
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Fig. 7. (a) The trajectories of the S-matrix poles (fit 4) in the complex mass plane (GeV) on the sheets II and III for the KK̄-ππ
and qq̄-ππ couplings increasing from x = 0 to the physical values x = 1. (b) The magnified region of the f0(890) resonance.
(c) The σ-meson trajectory in the complex plane of the ππ relative momentum k1 (GeV) with (solid line) and without (dashed
line) coupling to the qq̄ state.

is well established, the exact location and even the num-
ber of the relevant S-matrix poles is model dependent as
demonstrated in fig. 8. The models based on dynamical
input (coupled channel, potential, unitarized chiral per-
turbation theory) [11,12,14,16,17,19,31] usually produce
only one pole which can be traced to a weakly bound KK̄
state in an appropriate limit of the channels coupling. One
exception to this observation is a coupled-channel model
[13] where the second pole near the KK̄ threshold results
from the interplay of a nearby qq̄ pole with dynamical
singularities. We were not able to find a good fit with the
same feature in our model; the main reason appears to
be due to the using of the energy dependent potentials in
eq. (13) contrary to the case in [13]. However, it is not
excluded that two-pole solutions can be found with some
other parametrization of interactions in CCM. It remains
to be investigated whether two-pole solutions are compat-
ible with the data on the φ→ γππ decay.

The K-matrix parameterizations [22,26,32–37] rou-
tinely produce the second pole on sheet III. There is, how-
ever, a much larger spread in this pole location than on
sheet II. As shown above, the reaction φ → γππ allows
one to probe the scattering KK̄ → ππ both above and
below the KK̄ threshold, and the ππ mass distribution in
φ → γππ is very sensitive to the S-matrix poles related
to the f0(980). Therefore more detailed experimental data
on φ→ γππ would be very useful for reducing the present
uncertainty about the analytical structure of the S-matrix
in the f0(980) region.

6 The mixing between the qq̄ and mesonic
channels

The mixing of the quark-antiquark states with the open
meson channels can be studied in the CCM by using the
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Table 3. The calculated branching ratios for φ → γ(ππ)J=0 and φ → γ f0(980) in comparison with the experimental data.

Reaction Branching ratio Ref.
Theory

φ → γ f0(980)→ γππ 2.6 · 10−4 [2]

φ → γ f0(90) 1.9 · 10−4 [24]

φ → γ f0(980) (point-like) 1.4 · 10−4 [5]
φ → γ f0(980) (with form factor) 0.3 · 10−4 [5]

φ → γ (f0 + σ)→ γππ (q2q̄2 model) ∼ 10−4 [43]
φ → γ (f0 + σ)→ γππ (KK̄ model) ∼ 10−5 [43]
φ → γ (f0 + σ)→ γππ (ss̄ model) ∼ 5 · 10−5 [43]

φ → γ(π0π0)J=0 0.8 · 10−4 [25]
φ → γ(π+π−)J=0 1.6 · 10−4 [25]

φ → γ(π0π0)J=0 1.2 · 10−4 this paper
φ → γ(π0π0)J=0, (Mπ0π0 > 0.9GeV) 0.34 · 10−4 this paper
φ → γ(π+π−)J=0 2.3 · 10−4 this paper

Experiment

φ → γ(π0π0)J=0 (1.14± 0.10± 0.12) · 10−4 [6]
φ → γ(π0π0)J=0, (Mπ0π0 > 0.9GeV) (0.5± 0.06± 0.06) · 10−4 [6]
φ → γ f0(980) (3.42± 0.30± 0.36) · 10−4 [6]

φ → γ f0(980) (1.96± 0.46± 0.50) · 10−4 [7]
φ → γπ0π0 (1.08± 0.17± 0.09) · 10−4 [8]
φ → γπ0π0, (Mπ0π0 > 0.9GeV) (0.57± 0.06± 0.04) · 10−4 [8]

probability sum rule for a resonance embedded into a con-
tinuum [39] which is described in appendix B. The spectral
function ρ(s) which determines the probability density for
the qq̄ component in the scattering states, as defined by
eq. (B.21), is shown in fig. 9(a). In the case of weak cou-
pling, the probability density would be well localized near
the position of the bare qq̄ state atMr = 1.1GeV. For the
physical case, we find a broad peak centered above the KK̄
threshold in the region corresponding to the f0(1370) res-
onance (the poles ME and MC). There is also a sizable
contribution to the qq̄ spectral density from the low-mass
region of the σ-meson. The ρ(s) distribution in the f0(980)
resonance has a characteristic dip-bump structure result-
ing from an interplay of the resonance pole MA with a
nearby zero of the mass operator Π(s). The position and
the width of the ρ(s) distribution indicates that an essen-
tial contribution to the saturation of the sum rule (B.21)
comes from the pole MB related to the σ-meson, while
the narrow structure associated with the pole MA alone
plays a minor role. The fact that qq̄ coupling with the ππ
channel significantly enhances the spectral density ρ(s) in
the region of the σ-meson is related to the interplay of
the S-matrix poles demonstrated in fig. 7(c): the poleMB

corresponding to the σ-meson is pushed towards the ππ
threshold by the pole MC originating from the qq̄ state.

Using the spectral density ρ(s) we can calculate the
contribution of the qq̄ scalar mesons to the QCD sum rule
related to the scalar quark condensate [40]. Figure 9(b)
shows the Laplace transform of the spectral density which
is used in the sum rule analysis:

In
(
M2

)
=

∫ ∞

0

sne−s/M2
ρ(s) ds. (24)

The advantage of CCM with respect to the previous stud-
ies (see [41] and references therein) where the contribution

of the qq̄-mesons was usually approximated by one nar-
row resonance is a more realistic shape of the qq̄ spectral
density in the low-mass region which is important in the
Laplace sum rules. As a result, the momenta I0(M2) and
I1(M2) have quite different slopes in theirM2-dependence
as shown in fig. 9(b).

7 Discussion

The theoretical calculations of the decays φ → γππ and
φ → γ f0(980) and the corresponding experimental data
are summarized in table 3. The predicted branching ratios
for the γπ0π0 and γπ+π+ channels should be compared
with the experimental data with some caution. While
these branching ratios can be easily defined theoretically
(Γφ→γπ+π−/Γφ→γπ0π0 = 2 for the isoscalar ππ states,
e.g.), the data analysis relies on the modeling of com-
peting reaction mechanisms. In particular, the interpre-
tation of the experimental results for the γπ+π+ channel
involves the consideration of the interference between the
e+e− → φ→ γππ and e+e− → γρ→ γππ mechanisms. In
this respect, we wish to emphasize again the importance of
using a realistic K+K− → ππ amplitude instead of a sim-
ple superposition of BW resonances. The channel γπ0π0

which is free from the ρ-meson contribution in the ππ
channel appears to be better suited for the study of the ππ
invariant mass distribution, although this case has some
background due to the mechanism φ→ π0ρ0 → π0π0γ.

Our results are in good agreement with recent calcu-
lations within the chiral unitary approach [25] both for
the total width and for the ππ mass distribution. This
is not surprising because in both cases the f0(980) reso-
nance is produced mainly by the attractive interaction in
the KK̄ channel. Our result for the total width Γφ→γππ
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Fig. 8. The poles of the S-matrix corresponding to the
f0(980) in different models [6,14,13,16,18,20,22,32,34,36–38]:
(a) sheet II pole (Im k1 < 0, Im k2 > 0) and (b) sheet III pole
(Im k1 < 0, Im k2 < 0).

is close to the earlier calculations of the two-step mech-
anism with the intermediate K+K− state [5,24] which
used the BW approximation (6) with the coupling con-
stant g2

f0KK̄
/4π = 0.6GeV2. In our model we can define

an effective coupling constant gf0KK̄ by approximating the
KK̄ → ππ amplitude (B.17) by a BW resonance which
leads to slightly higher value of g2

f0KK̄
/4π = 1.1GeV2.

The effect of the form factor in the KK̄ππ vertex was
studied earlier in [5] where a suppression by a factor of
about 5 was given as an estimate. This significant sup-
pression resulted from the use of a very soft dipole form
factor with the characteristic parameter µ = 0.14GeV
(eq. (4.14) in [5]) which was suggested by the study of
the φ → γγ decay [42]. However; the 2γ decay is related
to the short-distance behavior of the KK̄ wave function,
while we are interested in the φKK̄ vertex at moderate
relative momenta (in general, there is no unique relation
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ρ 
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Fig. 9. (a) The spectral density of the qq̄ state and (b) the
corresponding Laplace transforms.

between these two properties, see the discussion in [12,
42]). It is difficult to justify such a low value of the form
factor parameter in the CCM: a good fit of the scatter-
ing data requires much harder form factors as discussed
in sect. 3. A weak effect of the form factor found in our
case is consistent with the results in [5] if the form factor
parameter µ ≥ 0.5GeV is used there.

In view of this overall agreement between different cal-
culations of the two-step mechanisms with the K+K− in-
termediate state we find it difficult to agree with the state-
ments [2,43] that the KK̄ model of f0(980) can be excluded
on the ground of its alleged conflict with the φ→ γ f0(980)
data. Since the hadronic part of the amplitude φ → γππ
is factored out as the matrix element tKK̄→ππ or, in the
simplified case, as the coupling constant gf0KK̄, the self-
consistency of the KK̄ model of f0(980) can be examined
by analyzing the value of gf0KK̄. For this purpose we use a
well-known result from nonrelativistic scattering theory:
the residue of the scattering matrix at a pole correspond-
ing to a bound state is uniquely related to the asymptotic
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normalization constant of the bound-state wave function
which for a weakly bound state depends, in leading or-
der, only on the binding energy. For a weakly bound KK̄
state, the relation between the gf0KK̄ and the binding en-
ergy Eb = 2mK −mf0 has the form

g2
f0KK̄

4π
= 32mKκ(1 +O(κ/λ)), (25)

κ =
√
mKEb, (26)

where λ is the range of the KK̄ interaction. Taking Eb =
8MeV and neglecting small corrections of the order κ/λ,
one gets gf0KK̄2/4π = 1.0GeV2 which is very close to the
values discussed above. Therefore a large KK̄ component
is naturally expected for the f0(980) state regardless of fur-
ther details of particular models. A relatively large value
of gf0KK̄ for the molecular KK̄ state was pointed out earlier
in [11].

8 Conclusion

The decay φ → γππ has been studied in an exactly solv-
able coupled-channel model containing the ππ, KK̄, and
qq̄ channels using separable potentials. The f0(980) reso-
nance corresponds to one S-matrix pole close to the KK̄
threshold; this pole has a dynamical origin and repre-
sents the molecular-like KK̄ state. The molecular picture
of the f0(980) meson is found to be in a fair agreement
with the experimental data. We confirm the assessment of
[5] that the earlier conclusions about suppression of the
φ→ γ f0(980) branching ratio in the molecular KK̄ model
were partly related to differences in modeling.

The lightest scalar meson, σ, has a dynamical ori-
gin resulting from the attractive character of the effec-
tive ππ interaction, with a partial contribution from the
coupling via the intermediate scalar qq̄ states. The dis-
tinction between genuine qq̄ states and dynamical reso-
nances, σ and f0(980), can be illuminated by considering
the limit Nc → ∞ where the qq̄ states turn into infinitely
narrow resonances while the dynamical states disappear
altogether.

The structure of the qq̄ state embedded into the
mesonic continuum has been analyzed using the calcu-
lated qq̄ spectral density. The gross structure of the quark-
antiquark spectral density ρ(s) is related to the f0(1370)
resonance. There is also a significant contribution to ρ(s)
in the low mass region (σ-meson) which is related to the
strong coupling between the ππ and qq̄ channels. The
same approach can also be used for the QCD sum rules
related to the gluon condensate by extending the coupled-
channel model to include the mixing with the scalar glue-
balls. The consideration of this topic is beyond the scope
of this paper.

The author thanks M.P. Locher for a fruitful collaboration
which lead to this paper, S.I. Eidelman for bringing attention
to the problem of the radiative φ decays and a discussion of
the experimental data, D. Bugg, L. Leśniak, and B.S. Zou for
discussions of the nature of the f0(980).

Appendix A. The function I (a, b) and the
decay widths

The function I(a, b) is given by (see, e.g., [24] and refer-
ences therein)

I(a, b) =
1

2(a− b) −
2

(a− b)2
(
f

(
1
b

)
− f

(
1
a

))

+
a

(a− b)2
(
g

(
1
b

)
− g

(
1
a

))
, (A.1)

f(x) =



−

(
arcsin

1
2
√
x

)2

, x >
1
4
,

1
4

(
ln

1 +
√
1− 4x2

1−√
1− 4x2

− iπ
)2

, x ≤ 1
4
,

(A.2)

g(x)=




√
4x2 − 1 arcsin

1
2
√
x
, x >

1
4
,

1
2

√
1− 4x2

(
ln

1 +
√
1− 4x2

1−√
1− 4x2

− iπ
)
, x ≤ 1

4
.

(A.3)

The φK+K− coupling constant gφ is related to the
decay width by

Γ (φ→ K+K−) =
g2φ

48πm2
φ

(
m2

φ − 4m2
K

)3/2
. (A.4)

The relation between the coupling constants and decay
widths for the scalar meson f0 has the form

Γ (f0 → ππ) =
1
2
g2f0ππ

16πm2
f0

(
m2

f0 − 4m2
π

)1/2
, (A.5)

where the extra factor 1/2 accounts for the identity of the
two pions in the final state.

Appendix B. The coupled-channel model

The free Green function G0(s) is a diagonal matrix:

G0(s) =

(
G0

1(s) 0 0
0 G0

2(s) 0
0 0 G0

3(s)

)
, (B.1)

where the single-channel Green functions have the form

G0
1(s) =

2
π

∫ ∞

0

|k1〉〈k1|
s/4− (m2

π + k2
1)
k2
1 dk1, (B.2)

G0
2(s) =

2
π

∫ ∞

0

|k2〉〈k2|
s/4− (m2

K + k2
2)
k2
2 dk2, (B.3)

G0
3(s) = G

0
3(s)|qq̄〉〈qq̄|, G0

3(s) =
1

s−M2
r

. (B.4)

Here |k1〉 and |k2〉 denote the free ππ and KK̄ states with
relative momenta k1 and k2, respectively. The state |qq̄〉 in
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Π(s) =
4(g2

13G
0
1(s) + g2

23G
0
2(s) + (2v12(s)g13g23 − g2

13v22(s)− g2
23v11(s))G

0
1(s)G

0
2(s))

1− v11(s)G0
1(s)− v22(s)G0

2(s) + (v11(s)v22(s)− v2
12(s))G

0
1(s)G

0
2(s)

. (B.20)

channel 3 has a bare massMr. With the form factors given
by eq. (15) the matrix elements of the Green functions are

G0
n(s) = 〈n|G0

n(s)|n〉 =
λ3

n

2(kn(s) + iλn)2
,

n = 1, 2, (B.5)

where kn(s) is the relative momentum in the channel n:

k1(s) =
√
s/4−m2

π, (B.6)

k2(s) =
√
s/4−m2

K. (B.7)

The ππ elastic scattering amplitude fππ(s) and the
ππ-KK̄ amplitude fππ→KK̄(s) have the form

fππ(s) = − 〈k1|T (s)|k1〉 = −ξ(k1)2N11(s)
D(s)

, (B.8)

fππ→KK̄(s)=−〈k1|T (s)|k1〉 = −ξ(k1)ξ(k2)N12(s)
D(s)

, (B.9)

where

D(s) = 1− u11(s)G0
1(s)− u22(s)G0

2(s)

+ (u11(s)u22(s)− u2
12(s))G

0
1(s)G

0
2(s), (B.10)

N11(s) = u11(s)− (u11(s)u22(s)− u2
12(s))G

0
3(s), (B.11)

N12(s) = u12, (B.12)

u11(s) = v11(s) +
g213

s−M2
r

, (B.13)

u12(s) = v12(s) +
g13g23
s−M2

r

, (B.14)

u22(s) = v22(s) +
g223

s−M2
r

. (B.15)

The connection between the partial wave S-matrix and
the scattering amplitude fππ is given by

SI=0
J=0(s) = η

0
0(s)e

2iδ0
0(s) = 1 + 2ik1fππ(s), (B.16)

where δ00(s) is the scattering phase and η0
0(s) is the inelas-

ticity parameter. The T -matrix element is related to the
amplitude (B.9) by

tKK̄→ππ = 8π
√
sfKK̄→ππ. (B.17)

The spectral density of the qq̄ state has the form [13]

ρ(s) =
1
2πi

(G3(s− iε)−G3(s+ iε)), (B.18)

where G3(s) is the exact Green function in the |qq̄〉 sub-
space:

G3(s) = 〈qq̄|G(s)|qq̄〉 = 1
s−M2

r −Π(s)
(B.19)

and Π(s) is the mass operator of the qq̄ state:

see equation (B.20) above.

The spectral density ρ(s) satisfies the normalization con-
dition ∫ ∞

4m2
π

ρ(s) ds = 1. (B.21)

Equations (B.18), (B.21) represent the completeness rela-
tion projected onto the qq̄ channel and the normalization
〈qq̄|qq̄〉 = 1.

Appendix C. The nonrelativistic
approximation

The amplitudes corresponding to the diagrams in fig. 5
have the form

MNR =
egφ tK+K−→ππ

(2π)3
(Ia + Ib + Ic)

=
egφtK+K−→ππmφω

2π2m2
K

Jλ(Mππ), (C.1)

where

Ia = 8
∫

d3k
2Ek

× (εφ · k)(εγ · (k + q/2))F (|k + q/2|)
(k2 −m2

K + iε)((k − q)2 −m2
K + iε)

, (C.2)

=
4mK

mφMππ

∫
d3k

× (εφ · k)(εγ · k)F (|k + q/2|)
(∆φ − k2 + iε)(∆ππ − (k + q/2)2 + iε)

, (C.3)

Ib = 2(εφ · εγ)
∫

d3k
2Ek

F (|k + q/2|)
((k − q)2 −m2

K + iε)
(C.4)

=
(εφ · εγ)
Mππ

∫
d3k

F (|k|)
(∆ππ − k2 + iε)

, (C.5)

Ic = 2
∫

d3k
2Ek

(εφ · k)(εγ · k/k) d
d|k|F (|k|)

(k2 −m2
K + iε)

(C.6)

= Ic1 + Ic2, (C.7)

Ic1 = − (εφ · εγ)
Mφ

∫
d3k

F (|k|)
(∆φ − k2 + iε)

, (C.8)

Ic2 = −2(εφ · εγ)
3Mφ

∫
d3k

k2F (|k|)
(∆φ − k2 + iε)2

. (C.9)
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Here Ek =
√
k2 +m2

K, ∆φ = (mφ − 2mK)mK, ∆ππ =
(Mππ −2mK)mK, the form factor F (|k|) = ξ2(|k|) accord-
ing to eq. (15), the subscript λ in Jλ(Mππ) refers to the
form factor parameter. In deriving the nonrelativistic ap-
proximation (C.3)–(C.7) we keep only the positive-energy
parts of the kaon propagators and substitute d3k/Ek →
d3k/mK in the final integral. The total amplitude MNR

vanishes at ω = 0 as expected for the electric dipole tran-
sition. The diagram fig. 5(c) contains two terms according
to eq. (C.7) which can be combined with the loop radiation
term (C.3) and the contact term (C.5) in a way that the
combinations (Ia + Ic2) and (Ib + Ic1) are explicitly finite
and both vanish at ω = |q| → 0. The integrals (C.3)–(C.9)
with our choice of the form factor can be straightforwardly
calculated in analytical form.
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